Benha University Faculty of Engineering- Shoubra Electrical Engineering Department First Year communications.

1st semester Exam Date: 29-12-2014

ECE111: Electronic Engineering fundamentals

Duration: 3 hours

- Answer all the following questions
- Illustrate your answers with sketches when necessary.
- The exam consists of two pages.

- No. of questions: 5
- Total Marks: 90 Marks
- Examiners: Dr. Ehsan Abaas Dr. Abdallah Hammad

K=1.38×10 ⁻²³ J/K	h=6.64×10 ⁻³⁴ J.s	q=1.6×10 ⁻¹⁹ C	m _o =9.1×10 ⁻³¹ Kg	$\epsilon_0 = 8.85 \times 10^{-14} \text{ F/cm}$
[Si] $n_i=1.5x10^{10}$ cm ⁻³	[Si] ε _{rs} = 11.7	[Si] E _g =1.12 eV	[Ge] n _i =2x10 ¹² cm ⁻³	

Question 1 (18 marks)

For the following statements, mark ($\sqrt{\ }$) for true statement and (X) for wrong statement and *correct* it.

1	Fermi level is located above the intrinsic level in n-type Si and below it in p-type Si.	()
2	In n-type Si, as doping concentration increases, Fermi level moves toward the conduction band edge.	()
3	For a reverse biased pn junction, as the reverse bias voltage increases the depletion capacitance increases	()
4	For the same doping level, the conductivity of the p-type Si is higher than that of n-type Si .	()
5	Holes move in the opposite direction of the applied electric field.	()
6	In a pn junction, depletion region extends more in lightly doped side than in heavily doped side.	()
7	Forward biased pn junction can be used as a variable capacitor (varactor).	()
8	Drift current arises when there is a change in carrier concentration.	()
9	The intrinsic carrier concentration of a semiconductor decreases as its energy gap increases.	()
10	The mass action law is valid at thermal equilibrium in intrinsic semiconductors only	()
11	When an intrinsic semiconductor is doped with N_D donors, the new electron concentration is: $n = n_i + N_D$	()
12	At very high temperatures, doped semiconductors tend to be intrinsic	()
13	With the rise in temp around 300 k the conductivity of an intrinsic semiconductor decrease	()
14	The Hall effects occur only in (metals, intrinsic, and extrinsic)	()
15	The depletion region in the pn junction is depleted of immobile charge	()
16	The depletion region in the pn junction is reduced when the junction is forward bias	()
17	When the diode is reveres bias it is equivalent to off switch	()
18	As the time between collisions increases, the mobility decreases	()

Question 2 (18 marks)

- a- (9 marks) Silicon semiconductor at T = 300 K is doped with donors atoms of $N_D = 3 \times 10^{10}$ cm⁻³. Assume $ni = 1.5 \times 10^{10} \text{ cm}^{-3}$. Calculate:
 - i- The thermal-equilibrium electron and hole concentrations in the sample.
 - ii- The Fermi energy level with respect to the intrinsic Fermi level at T = 300 k.

(P.T.O) >>>>

b- (9 marks) The electron concentration in Silicon at T = 300 K is given by: $n(x) = 10^{16} \exp\left(\frac{-x}{18}\right) \text{Cm}^{-3}$ Where x is measured in μm and is limited to $0 \le x \le 25 \ \mu m$. The electron diffusion coefficient is $D_n = 25 \ \text{cm}^2/\text{s}$. The electron current density through the semiconductor is constant and equal to $J_n = -40 \ \text{A/cm}^2$. The electron current has both diffusion and drift current components. Determine the electric field as a function of x which must exist in the semiconductor.

Question 3 (18 marks)

a- **(9 marks)** Germanium is doped with 5 x 10^{17} **donor** atoms per cm³ at T = 300 K. The dimensions of the Hall device shown in Figure. 1 are t = 5×10^{-3} cm, d = 2×10^{-2} cm. and W= 0.1 cm. The current is I_x = 250 μ A. The applied voltage is V_x = 100 mV. The magnetic flux density is B_z = 5×10^{-2} tesla (Wb/m²). Calculate:

ii- The Hall Electric field.

iii-The carrier mobility.

b- (9 marks) Silicon P⁺n junction has $N_A = 10^{18}$ cm⁻³ and $N_D = 5 \times 10^{15}$ cm⁻³. The cross-sectional area of the junction is $A = 5 \times 10^{-5}$ cm⁻². Calculate

i- The junction capacitance for V_R = 3V

ii- Show that the curve $([1/C]^2$ versus V_R) can be used to find N_D and V_O .

Question 4 (18 marks)

- a- (9 marks) The charge distribution of an abrupt pn junction is shown in Figure. 2
 - i- <u>Derive</u> an expressions for the electric field in the region $-x_p < x < x_n$.
 - ii- By using Poisson's Equation <u>find the expressions</u> for the potential distribution in the region $-x_p < x < x_n$

- i- <u>Draw</u> an equilibrium energy band diagram of this junction.
- ii- Calculate the built-in voltage at 300K. Given that Eg =1.12 eV
- iii- If the donor concentration $N_D = 6.2 \times 10^{17}$ cm⁻³, Calculate N_A

Figure 2

Question 5 (18 marks)

- a- **(6 marks)** <u>Define:</u> barrier potential, Static forward resistance, PIV, Reverse Stauration current.
- b- (6 marks) Assuming an ideal diode, the dc output across the resistor V_{dc} =2 V.
 - i- Sketch (V_i, V_D, I_D) for the half-wave rectifier of Figure.
 3. The input is a sinusoidal waveform with a frequency of 50 Hz.
 - ii- Determine the PIV of the diode.

c- (6 marks) Consider a silicon pn junction with the following parameters. $N_D = 10^{16} \text{ cm}^{-3} N_A = 5 \text{x} 10^{16} \text{ cm}^{-3}, \ n_i = 1.5 \text{x} 10^{10} \text{ cm}^{-3}$ $\tau_n = \tau_p = 5 \text{x} 10^{-7} \text{ S}, \ D_p = 10 \text{ cm}^2/\text{S}, \ D_n = 25 \text{ cm}^2/\text{S}, \ \epsilon_{rs} = 11.7, \text{ and the cross sectional area is } 10^{-3} \text{ cm}^2$ Calculate the reverse saturation current I_o .

Good Luck

Dr. Ehsan Abaas – Dr. Abdallah Hammad