Benha University Faculty of Engineering- Shoubra Electrical Engineering Department First Year communications. 1st semester Exam Date: 29-12-2014 **ECE111: Electronic Engineering fundamentals** **Duration: 3 hours** - Answer all the following questions - Illustrate your answers with sketches when necessary. - The exam consists of two pages. - No. of questions: 5 - Total Marks: 90 Marks - Examiners: Dr. Ehsan Abaas Dr. Abdallah Hammad | K=1.38×10 ⁻²³ J/K | h=6.64×10 ⁻³⁴ J.s | q=1.6×10 ⁻¹⁹ C | m _o =9.1×10 ⁻³¹ Kg | $\epsilon_0 = 8.85 \times 10^{-14} \text{ F/cm}$ | |---|------------------------------|------------------------------|--|--| | [Si] $n_i=1.5x10^{10}$ cm ⁻³ | [Si] ε _{rs} = 11.7 | [Si] E _g =1.12 eV | [Ge] n _i =2x10 ¹² cm ⁻³ | | ### Question 1 (18 marks) # For the following statements, mark ($\sqrt{\ }$) for true statement and (X) for wrong statement and *correct* it. | 1 | Fermi level is located above the intrinsic level in n-type Si and below it in p-type Si. | (|) | |----|--|---|---| | 2 | In n-type Si, as doping concentration increases, Fermi level moves toward the conduction band edge. | (|) | | 3 | For a reverse biased pn junction, as the reverse bias voltage increases the depletion capacitance increases | (|) | | 4 | For the same doping level, the conductivity of the p-type Si is higher than that of n-type Si . | (|) | | 5 | Holes move in the opposite direction of the applied electric field. | (|) | | 6 | In a pn junction, depletion region extends more in lightly doped side than in heavily doped side. | (|) | | 7 | Forward biased pn junction can be used as a variable capacitor (varactor). | (|) | | 8 | Drift current arises when there is a change in carrier concentration. | (|) | | 9 | The intrinsic carrier concentration of a semiconductor decreases as its energy gap increases. | (|) | | 10 | The mass action law is valid at thermal equilibrium in intrinsic semiconductors only | (|) | | 11 | When an intrinsic semiconductor is doped with N_D donors, the new electron concentration is: $n = n_i + N_D$ | (|) | | 12 | At very high temperatures, doped semiconductors tend to be intrinsic | (|) | | 13 | With the rise in temp around 300 k the conductivity of an intrinsic semiconductor decrease | (|) | | 14 | The Hall effects occur only in (metals, intrinsic, and extrinsic) | (|) | | 15 | The depletion region in the pn junction is depleted of immobile charge | (|) | | 16 | The depletion region in the pn junction is reduced when the junction is forward bias | (|) | | 17 | When the diode is reveres bias it is equivalent to off switch | (|) | | 18 | As the time between collisions increases, the mobility decreases | (|) | #### Question 2 (18 marks) - a- (9 marks) Silicon semiconductor at T = 300 K is doped with donors atoms of $N_D = 3 \times 10^{10}$ cm⁻³. Assume $ni = 1.5 \times 10^{10} \text{ cm}^{-3}$. Calculate: - i- The thermal-equilibrium electron and hole concentrations in the sample. - ii- The Fermi energy level with respect to the intrinsic Fermi level at T = 300 k. (P.T.O) >>>> b- (9 marks) The electron concentration in Silicon at T = 300 K is given by: $n(x) = 10^{16} \exp\left(\frac{-x}{18}\right) \text{Cm}^{-3}$ Where x is measured in μm and is limited to $0 \le x \le 25 \ \mu m$. The electron diffusion coefficient is $D_n = 25 \ \text{cm}^2/\text{s}$. The electron current density through the semiconductor is constant and equal to $J_n = -40 \ \text{A/cm}^2$. The electron current has both diffusion and drift current components. Determine the electric field as a function of x which must exist in the semiconductor. ## Question 3 (18 marks) a- **(9 marks)** Germanium is doped with 5 x 10^{17} **donor** atoms per cm³ at T = 300 K. The dimensions of the Hall device shown in Figure. 1 are t = 5×10^{-3} cm, d = 2×10^{-2} cm. and W= 0.1 cm. The current is I_x = 250 μ A. The applied voltage is V_x = 100 mV. The magnetic flux density is B_z = 5×10^{-2} tesla (Wb/m²). Calculate: ii- The Hall Electric field. iii-The carrier mobility. b- (9 marks) Silicon P⁺n junction has $N_A = 10^{18}$ cm⁻³ and $N_D = 5 \times 10^{15}$ cm⁻³. The cross-sectional area of the junction is $A = 5 \times 10^{-5}$ cm⁻². Calculate i- The junction capacitance for V_R = 3V ii- Show that the curve $([1/C]^2$ versus V_R) can be used to find N_D and V_O . ## Question 4 (18 marks) - a- (9 marks) The charge distribution of an abrupt pn junction is shown in Figure. 2 - i- <u>Derive</u> an expressions for the electric field in the region $-x_p < x < x_n$. - ii- By using Poisson's Equation <u>find the expressions</u> for the potential distribution in the region $-x_p < x < x_n$ - i- <u>Draw</u> an equilibrium energy band diagram of this junction. - ii- Calculate the built-in voltage at 300K. Given that Eg =1.12 eV - iii- If the donor concentration $N_D = 6.2 \times 10^{17}$ cm⁻³, Calculate N_A Figure 2 #### Question 5 (18 marks) - a- **(6 marks)** <u>Define:</u> barrier potential, Static forward resistance, PIV, Reverse Stauration current. - b- (6 marks) Assuming an ideal diode, the dc output across the resistor V_{dc} =2 V. - i- Sketch (V_i, V_D, I_D) for the half-wave rectifier of Figure. 3. The input is a sinusoidal waveform with a frequency of 50 Hz. - ii- Determine the PIV of the diode. c- (6 marks) Consider a silicon pn junction with the following parameters. $N_D = 10^{16} \text{ cm}^{-3} N_A = 5 \text{x} 10^{16} \text{ cm}^{-3}, \ n_i = 1.5 \text{x} 10^{10} \text{ cm}^{-3}$ $\tau_n = \tau_p = 5 \text{x} 10^{-7} \text{ S}, \ D_p = 10 \text{ cm}^2/\text{S}, \ D_n = 25 \text{ cm}^2/\text{S}, \ \epsilon_{rs} = 11.7, \text{ and the cross sectional area is } 10^{-3} \text{ cm}^2$ Calculate the reverse saturation current I_o . #### **Good Luck** Dr. Ehsan Abaas – Dr. Abdallah Hammad